
Journal of Microscopy, 2011 doi: 10.1111/j.1365-2818.2011.03557.x

Received 12 April 2011; accepted 7 September 2011

Digital correction of motion artefacts in microscopy image
sequences collected from living animals using rigid
and nonrigid registration

K . S . L O R E N Z ∗, P . S A L A M A†, K . W . D U N N‡ & E . J . D E L P
∗

∗Video and Image Processing Laboratory, School of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN 47907, U.S.A.
†Department of Electrical and Computer Engineering, Indiana University, Indianapolis, IN 46202,

U.S.A.
‡Division of Nephrology, School of Medicine, Indiana University, Indianapolis, IN 46202, U.S.A.

Key words. Intravital microscopy, two-photon microscopy, multiphoton
microscopy, in vivo imaging, non-rigid image registration.

Summary

Digital image analysis is a fundamental component of
quantitative microscopy. However, intravital microscopy
presents many challenges for digital image analysis. In
general, microscopy volumes are inherently anisotropic, suffer
from decreasing contrast with tissue depth, lack object edge
detail and characteristically have low signal levels. Intravital
microscopy introduces the additional problem of motion
artefacts, resulting from respiratory motion and heartbeat
from specimens imaged in vivo. This paper describes an
image registration technique for use with sequences of
intravital microscopy images collected in time-series or in
3D volumes. Our registration method involves both rigid
and nonrigid components. The rigid registration component
corrects global image translations, whereas the nonrigid
component manipulates a uniform grid of control points
defined by B-splines. Each control point is optimized by
minimizing a cost function consisting of two parts: a term to
define image similarity, and a term to ensure deformation grid
smoothness. Experimental results indicate that this approach
is promising based on the analysis of several image volumes
collected from the kidney, lung and salivary gland of living
rodents.

Introduction

Optical microscopy has become one of the most powerful
techniques in biomedical research. Among the most exciting
forms of microscopy is ‘intravital microscopy’, a termed

Correspondence to: Edward J. Delp, School of Electrical and Computer Engineering,

Purdue University, West Lafayette, IN 47907, U.S.A. E-mail: ace@ecn.purdue.edu

coined by Ellinger & Hirt (1929, 1930) for the technique
of microscopic imaging of living animals. It is perhaps
surprising that intravital microscopy has been conducted
for much more than 100 years, first used to observe the
behaviour of leukocytes in frogs (Dutrochet 1824; Wagner
1839; Cohnheim 1889). Increasingly applied throughout the
20th century, intravital microscopy experienced a quantum
boost in 1990 with the invention of multiphoton microscopy,
a technique that facilitates imaging hundreds of micrometers
into biological tissues at subcellular resolution (Denk et al.
1990).

Intravital multiphoton microscopy has since been used to
obtain unique insights into the in vivo cell biology of the brain
(Skoch et al. 2005; Svoboda & Yasuda 2006), the immune
system (Sumen et al. 2004; Hickey & Kubes 2009; Zarbock &
Ley 2009) and cancer (Condeelis & Segall 2003; Fukumura
et al. 2003; Lunt et al. 2010). Intravital microscopy also has
a long history of productive application to visceral organs,
such as the liver (Irwin & MacDonald 1953; Clemens et al.
1985) and the kidney (Ghiron 1912; Steinhausen & Tanner
1976). However, multiphoton microscopy of visceral organs
is generally complicated by motion resulting from respiration
and heartbeat. Amounts of sample motion that are acceptable
for lower-resolution techniques are intolerable in multiphoton
microscopy, whose submicrometer resolution is completely
spoiled with even the slightest motion in the tissue.

To some extent, motion artefacts can be minimized by
immobilizing the organ or coordinating image capture with
respiration. In many cases, these approaches are sufficiently
effective to facilitate high-resolution multiphoton fluorescence
microscopy of the kidney (Dunn et al. 2002; Russo et al. 2007;
Peti-Peterdi et al. 2009), the liver (Theruvath et al. 2008;
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Li et al. May 2009) and even the lung (Kreisel et al. 2010).
However, these methods are by no means foolproof, so that
imaging studies are frequently plagued with residual motion
artefacts. Here, we describe an image processing method
that effectively corrects for motion artefacts in sequences of
intravital microscopy images collected in time-series or in
three-dimensional volumes, based upon a combined rigid and
nonrigid registration technique using B-splines. This image
registration method will aid in future segmentation and other
image analysis techniques. In particular, the proposed image
registration method consists of two distinct components: a
rigid registration component that corrects global translations,
and a nonrigid registration component utilizing B-splines to
correct localized, nonlinear motion artefacts. We demonstrate
that this registration technique is effective for correcting
motion artefacts in image sequences collected in time-series or
in 3D, using image volumes collected from the kidney, lung,
and salivary gland of living rodents.

Methods

Image collection

Images were collected using multiphoton fluorescence
excitation, using a BioRad MRC1024 confocal/multiphoton
microscope system (Carl Zeiss, Inc., Thornwood, NY) equipped
with a Nikon 60X NA1.2 water immersion objective (Nikon
Inc., Melville, NY) (for images of the kidney) or an Olympus
Fluoview 1000 confocal/multiphoton microscope system
(Olympus, Inc., Center Vally, PA) equipped with an Olympus
20X, NA 0.95 water immersion objective (Olympus, Inc.,
Center Vally, PA) (for images of the lung) or an Olympus 60X,
NA1.2 water immersion objective (for images of the salivary
gland). Images were kindly provided by Ruben Sandoval
and Bruce Molitoris (rat kidney), Irina Petrache and Robert
Presson (rat lung), and Roberto Weigert (mouse salivary
gland). Images were collected at a rate of approximately one
frame per second.

Rigid registration

Image registration is the task of finding a function that
maps coordinates from a moving test image to corresponding
coordinates in a reference image (Zitová & Flusser 2003).
It is often desirable to transform information obtained from
multiple images into a single common coordinate system
encompassing the knowledge available from all the various
source images (Hajnal et al. 2001). Current registration
methods generally consider registering only a single pair
of reference and moving images. Using medical image
registration on stacks containing hundreds of images is still
an ongoing field of research.

Rigid registration is first performed to correct global
translations throughout the image sequence before nonrigid
registration so that the nonrigid process focuses solely on

localized motion rather than both local and global motion.
The particular registration parameters selected for this
approach include a Neumann boundary condition, where
pixel values outside of the image boundary are given the
values of the nearest pixel within the image boundary. In
addition, registration is performed using nearest-neighbour
interpolation. Furthermore, an exhaustive search is not
performed to compute the registration solution; instead,
several optimization methods have been studied (Swisher et al.
2000; Arnold et al. 2005). Our registration implementation
employs the well-known quasi-Newton Broyden–Fletcher–
Goldfarb–Shanno (BFGS) optimizer. This optimization method
greatly reduces computational complexity by estimating the
Hessian matrix rather than computing it directly. As a result,
the error metric is evaluated for only a small subset of all
possible registered offset locations (Ibánez et al. 2002).

The registration metric used was mean squared error

(u, v) = argmin
(u, v)

{ ∑
m

∑
n

(xi−1(m, n)

− xi (m − u, n − v))2

}
, (1)

where i denotes the current image number, xi−1(m, n) and
xi (m, n) denote the pixels at location (m, n) within the
reference image xi−1 and moving image xi respectively, and
(u, v) denotes the obtained registration offset distances. The
mean squared error metric is a common metric with a large
capture radius (Brown 1992). To register an entire stack
of images, the moving test image was chosen to be the
current image, and the reference image was chosen to be
the previous (unregistered) image. If the registration of the
current image in reference to the previous image is denoted as
r(xi , xi−1) = xi ◦ xi−1, the output of the registration process in
terms of the first image can be represented as a concatenation
of all previous registrations

r (xi , x1) = r (xi , xi−1) ◦ r (xi−1, xi−2) ◦ · · · ◦ r (x2, x1) (2)

as was similarly performed in Kim et al. (2007). This was found
to greatly improve registration performance instead of using
the first image in the stack as the reference image, as well
as reduce the computational complexity and consequently
the time required to analyze the entire series. In fact, the
current image may contain few of the same structures
also visible in the first image if the sequence has already
significantly progressed into the stack of images. This result
was especially true for three-dimensional/volumetric data,
or image sequences corresponding with increasing tissue
depth. Using a preselected image in the stack as the reference
image has undergone experimentation using time-series data,
or image sequences corresponding with increasing time
instances, as the same cellular objects are expected to be in
view for every image in the sequence. However, no noticeable
improvement was observed.
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In addition to the mean squared error metric used, the
following metrics have been evaluated:

(u, v) = argmin
(u, v)

{∑
m

∑
n

xi−1(m, n)xi (m − u, n − v)
}

(u, v) = argmin
(u, v)

{∑
m

∑
n

|xi−1(m, n) − xi (m − u, n − v)|
}
,

(3)

where xi−1(m, n) and xi (m, n) denote the pixels at location
(m, n) within the reference image and moving image,
respectively. Registration was performed using both metrics,
and the results were observed to be visually identical to those
using the mean squared error metric. Furthermore, the use
of mutual information as a metric has been evaluated (Pluim
et al. 2003). This consisted of maximizing the following:

(u, v) = argmin
(u, v)

{MI (xi−1(m, n), xi (m − u, n − v))} , (4)

where

MI (x(m, n), y(m−u, n−v))= H (x(m, n))

+ H (y(m − u, n − v))

− H (x(m, n), y(m−u, n−v))
(5)

is the mutual information between x(m, n) and y(m − u,

n − v), and H denotes Shannon entropy (Cover & Thomas
2006). The mutual information implementation from (Mattes
et al. 2001) has been used here. However, results using mutual
information were poorer than those obtained using the mean
squared error metric. It has been extensively shown that
metrics based on the evaluation of mutual information are
well suited for overcoming the difficulties of multi-modality
registration, where images to be registered are acquired using
different imaging techniques such that pixel intensities for the
same objects are not correlated across images. Because our
data sets are all single modality, having mutual information
perform poorly is not surprising.

Additionally, this rigid registration method assumes
greyscale single channel images, not multi-channel images.
Therefore, for multi-channel data sets, a particular channel
must be selected to perform registration on. Simply using
one of the multiple channels directly may be enticing due
to its simplicity. However, using only one of the channels and
discarding the remaining channels omits much information
which may cause improper image registration in these
discarded channels. Indeed, for the data sets we show here, we
have obtained better results using a composite gray channel,
xgrey, that is similar to the luminance component of each
image. This new grey image used with our registration method
is given as:

xgray = r
r + g + b

xred + g
r + g + b

xgreen + b
r + g + b

xblue,

(6)

where

r =
∑

m

∑
n

xred (m, n)

g =
∑

m

∑
n

xgreen (m, n)

b =
∑

m

∑
n

xblue (m, n) (7)

and where xred, xgreen and xblue denote the red, green, and
blue components of the input image x, respectively. Even
though a linear combination of the three channels has
no biological significance, using grey composite images for
registration has corrected significantly more motion artefacts
than using any individual channel for the images that we
have evaluated thus far, as the composite gray image contains
and uses information from the entire image. However, one
can easily imagine situations in which a particular channel
might provide better registration results, as these results will
depend upon the particular data being analyzed. Finally, after
translation results are obtained using the gray image, these
offsets are then replicated across all channels when obtaining
the registered image.

If the system is not required to be real-time when the entire
stack of images is available, the system can be implemented
using noncausal methods. In our rigid-registration approach,
the output image size is unknown unless the maximum total
displacement due to registration is known. However, this
information is not available until the entire data set has been
analyzed. For the system to be causal, an assumption about
the output image size must be made, and the placement of the
first image in the output image must be chosen. However, with
a noncausal approach, the system has the advantage of being
able to analyze the entire data set before producing any output
images. After all images have been analyzed, the maximum
displacement across all images can be determined to set the
output image size so that no source images are truncated. For
the sake of simplicity, we will assume the system is not utilized
in a real-time scenario, and is implemented using noncausal
methods.

Nonrigid registration

In this section, we will now address how to circumvent the
localized motion artefacts and nonlinear distortions caused by
respiration and heartbeat. Here, we will investigate a nonrigid
registration technique using B-splines, an extension of the
work proposed in (Rueckert et al. 1999). This method also
allows for easy visualization of the distortion via deformation
grids.

This nonrigid registration method deforms an image by first
establishing an underlying mesh of control points, and then
manipulates these control points in a manner that maintains
a smooth and continuous transformation. To begin, a grid
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of control points, φi , j , is initially constructed with equal
spacings δx and δy between points, in the horizontal and
vertical directions, respectively. The nonrigid transformation
T of a point (x, y) in the moving image to the corresponding
point (x′, y′) in the reference image is given by the mapping
T(x, y) → (x′, y′) (Mazaheri et al. 2010)

T(x, y) =
3∑

l=0

3∑
m=0

Bl (u)Bm(v)φi+l, j+m, (8)

where i = �x/δx� − 1 and j = �y/δy� − 1 are the indices of
the nearest control point φi , j above and to the left of (x, y), and
u = x/δx − �x/δx� and v = y/δy − �y/δy� are such that (u, v)
is the relative position of (x, y) relative to φi , j . In addition, Bl

represents the lth basis function of the B-spline (Lee et al. 1997;
Unser 1999):

B0(t) = (1 − t)3/6

B1(t) = (3t3 − 6t2 + 4)/6

B2(t) = (−3t3 + 3t2 + 3t + 1)/6

B3(t) = t3/6. (9)

As previously stated, in addition to the nonrigid deformation
maximizing the similarity between the registered image and
the reference image, the deformation must be realistic and
smooth. To constrain the deformation field to be smooth, a
penalty term that regularizes the transformation is introduced
into the cost function as (Rohlfing et al. 2003; Sorzano,
Thévenaz & Unser 2005):

C smooth = 1
A

∫ X

0

∫ Y

0

[(
∂2T
∂x2

)2

+
(

∂2T
∂ y2

)2

+ 2

(
∂2T
∂x∂ y

)2]
d x d y.

(10)

This regularization is necessary because each pixel in the
image is free to move independently. As such, in an extreme
case, it is possible that all pixels with one particular intensity
in the moving image may map to a single pixel having this
same intensity in the reference image, causing the resulting
deformation field to be unrealistic (Pennec et al. 1999).
This is one of the primary reasons why nonrigid image
registration is considered difficult, as an appropriate balance
and compromise must be reached between allowing large
amounts of independent movement and ensuring smoothness
of the transformation.

The optimal deformation of the grid of control points is found
by optimizing a cost function. This cost function includes two
terms with two competing goals. The first goal is to maximize
the similarity and alignment between the reference image and
the deformed moving or registered image. The second goal
is to smooth and regularize the deformation to create a realistic

transformation. This cost function is written as:

C total = C similarity (I ′
n−1(x, y), In(T(x, y))) + λC smooth(T), (11)

where n denotes the current image number, I ′ denotes the
registered image and λ is a weighting coefficient which
defines the trade-off between the two competing cost terms.
In our work, we have chosen C similarity to have decreasing
value for increasingly similar images (i.e. two identical
images have C similarity = 0). With such an approach, and
by also wanting to minimize sharp warping elements of the
transformation T defined in C smooth, we desire to minimize
C total as well. The similarity metric, C similarity, may be defined
as one of numerous possibilities, including sum of squared
differences, sum of absolute differences, or normalized mutual
information, whichever may fit the particular image set best.
In our case, we use sum of log of absolute differences:

C similarity(Ix, Iy)= 1
M ∗ N

∑
m

∑
n

log(|Ix(m, n)−Iy(m, n)|+1).
(12)

Our experiments have shown that this similarity metric
has significantly outperformed any of the aforementioned
similarity metrics for our particular data sets, both from a
qualitative viewpoint (from visual inspection) and from a
quantitative viewpoint (using sum of squared differences to
evaluate registration accuracy).

The degree of deformation allowed is also affected by the
resolution of the grid of control points used, and hence
affects how readily C similarity may be minimized. A large,
sparse spacing of control points corresponds with a more
global nonrigid deformation, which may not allow C similarity to
reach values near zero. Alternatively, a small, dense spacing
of control points corresponds with highly local nonrigid
deformations and more readily allows C similarity to reach
values near zero, but may also encourage more unrealistic
deformations. In our work, we have experimented with
various grid spacing values, and have found that values that
work well are highly dependent on image size, the content
of these images, and the degree of motion artefacts present
throughout the stack of images. As a result, grid spacing values
are currently chosen empirically.

Similar to the rigid registration method, the nonrigid
B-spline registration method also assumes greyscale, single
channel images, not multi-channel (multiple component)
images. Therefore, we use the same composite gray channel
constructed previously to use with this registration method.
More specifically, the resulting greyscale image from the rigid
registration method is used as the input image to the nonrigid
registration method. Then, for each image, a final deformation
field based on the gray image is obtained. This deformation field
is then used to transform all channels of the image.

Because the data set to be registered consists of an entire
stack of images, nonrigid registration is again performed on
an image by image basis. In this case, the current image’s
(the current image will be designated as the moving image)
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reference image is simply not the prior image in the stack.
Instead, the reference image used is the registered or warped
prior image. This is in contrast to the rigid registration
method previously described which corrected for translations.
In the rigid registration case, the moving test image was
the current image and the static reference image was the
original previous image. A cumulative sum of the incremental
translations obtained from rigid registration is then used to
register the current image. Using this approach with the
nonrigid registration method was shown to produce very poor
results. The cumulative sum of incremental deformation fields
created unrealistic final deformation fields. This is because
the deformation field is not necessarily twice continuously
differentiable after the summation operation. Therefore, the
current image, after it has experienced rigid registration,
is registered against the previous image that has already
undergone both rigid followed by nonrigid registration,
ensuring that the resulting deformation field is smooth,
continuous, and realistic. The combined rigid translation and
nonrigid deformation obtained for this greyscale image is used
to transform all channels of the multi-channel image.

Validation and ‘ground truth’ data

In general, objective evaluation of registration results proves
to be difficult due to the lack of ‘ground truth’ data, for which
the true shape and position of each object in each image
is known. In fact, ground truth is impossible to obtain in
intravital microscopy, because both the shape and position
of an object are fluid in living animals, and are inevitably
altered in the process of isolating and fixing tissues. Thus,
to the degree that the concept of a single ‘true’ structure is
meaningful, it is unknown and unknowable. However, we
can make the assumption that shapes of structures remain
relatively constant over time, and seek to reduce changes.
In this section, we will describe a means based on block
motion estimation by which a more objective and quantitative
evaluation and validation of our results is performed. In
addition, a subjective evaluation of our results will also be
presented in the form of overlay images, maximum projection
images, and line scan projection images. A more objective
and quantitative evaluation and validation of our results is
described here.

Block motion compensation has been used with video
coding for decades. The overall idea is that block motion
estimation provides localized information about direction and
magnitude of motion throughout each image in a data set. The
method proceeds as follows (Jain & Jain 1981). The current
image is divided into an array of equally sized blocks of pixels.
Each block is then compared with its corresponding equally
sized block and its adjacent neighbours in the previous image.
The block in the previous image that is most similar to the block
in the current image creates a motion vector that predicts the
movement of this block from one location in the previous

image to its new location in the current image. A motion
vector is computed for each block in the entire image. The
search area of adjacent neighbouring blocks in the previous
image is constrained to p pixels in all four directions, and will
create a (2 p + 1) × (2 p + 1) search window. A larger p is
necessary to correctly predict larger motion, but at the same
time, this also increases computational complexity.

Block motion estimation has the strong ability to identify
localized motion patterns from one image to the next, and
also allows for easy visualization of this localized motion.
However, even though this method is able to identify and
visualize these highly local motion patterns, a consequence
of dividing the image into equally sized blocks is that it
does not provide an easy and obvious way to correct these
motions and produce a viable and realistically registered
image. Traditionally, following block motion estimation, a
motion compensated image is created by displacing each block
in the image by its associated motion vector. This may increase
the similarity between the motion compensated image and
the original image according to some defined cost metric.
However, the motion compensated image has obvious block
artefacts, creating an unrealistic image.

Although block motion estimation does not lend itself well
to image registration directly, we will use this method in an
attempt to objectively gauge the performance of our nonrigid
B-spline registration method. Because block motion estimation
does lend itself well to visualization, we can objectively
compare the quantity and angle of motion vectors before and
after nonrigid registration.

In our work, we have specified a 31 × 31 search window.
Searching for the maximum similarity between two blocks is
determined by minimizing a cost function. Here, we specify
mean squared error (MSE) as our cost function:

MSE = 1
N2

N−1∑
i=0

N−1∑
j=0

(C i j − Ri j )2, (13)

where N is our chosen block size, and C ij and Rij are the
pixels being compared in the current and reference blocks,
respectively. Several methods have been developed to reduce
the computational complexity of this motion estimation
process. However, because we are currently more concerned
with accuracy and correctness of our results rather than
computational complexity, we utilize the exhaustive search,
or full search, method to find the best possible match. This
method computes the cost function for every block in the
search window, requiring (2 p + 1)2 comparisons with blocks
having N2 pixels.

Experimental results

As described above, motion artefacts can be considered
to consist of two components: a rigid component in
which sequential images exhibit a translational offset from
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Fig. 1. (A) Example image from kidney vascular flow data set. (B) Maximum projection of entire series of images before rigid registration. (C) Maximum
projection of entire series of images after rigid registration. (D) Line scan projection image before rigid registration. (E) Line scan projection image after
rigid registration. Image field before registration is 205 μm wide. Image field after registration is wider because the field has shifted over the time of
collection to include more area. Image sequence contains 200 frames.

one another, and a nonrigid component which features
nonlinear distortions within each image. Many software
applications have been developed for addressing global linear
and orthogonal registration of microscopy images (e.g.
Metamorph and various plugins for ImageJ), because this
has been an ongoing problem in microscopy of living cells
in culture. We first show an example of a data set in which
motion artefacts consist primarily of rigid translations.

Figure 1(A) shows one of a series of images collected
over time from the kidney of a living rat, after intravenous
injection with fluorescent dextran. The motion of the sample
is apparent in Figure 1(B), which shows a maximum projection
of the entire time-series, in which the motion results in a
smearing in the images of the renal capillaries. The significant
reduction of motion artefacts is shown in the projection
of this time-series after rigid registration, shown in Figure
1(C). The effectiveness of the correction is more apparent in
Supporting Information Video 1, which shows the side-by-
side comparison of the sequences of the raw and registered
images. The effective elimination of specimen translation by
the registration technique is also shown in Figure 1(D) and
(E), which shows sequences of single lines from the images
before and after registration, respectively. In these images, the
intensity profile of each line is arrayed horizontally and the
time sequence arrayed vertically.

However, as previously discussed, intravital microscopy
introduces a completely different type of registration problem
in which there is intrascene motion resulting from motion in
the sample during collection of an individual image. Common
image registration approaches are based upon a rigid frame
translation, but because of the slow frame rate of laser point
scanning microscope systems, images collected from living
animals typically have complex intrascene distortions that
are not corrected with rigid translations. In a scanning
multiphoton fluorescence microscope, a two-dimensional
image is assembled by sequentially scanning a series of
horizontal lines across a sample. Because of the method of
scanning, adjacent pixels are collected only microseconds

apart in the horizontal direction, but are collected milliseconds
apart in the vertical direction. For this reason, motion artefacts
frequently appear in horizontal banding patterns. In fact,
motion artefacts will be apparent at any frame rate, differing
only in their relative manifestation as distortions between or
within frames. Correcting these artefacts is significantly more
challenging. We will now demonstrate the effectiveness of our
nonrigid registration technique on several data sets consisting
of images of the lung, kidney and salivary gland collected in
living rodents.

Figure 2(A) shows a single image from a time-series of
images collected from the lung of a living rat after injection
with fluorescein dextran (which fluoresces green in the
vasculature) and Hoechst 33342 (which labels cell nuclei
blue). We initially perform the rigid registration method as was
performed previously with the sequence of rat kidney images.
By comparing maximum projection and line scan projection
images from before and after rigid registration shown in
Figure 2(B)–(E), these images indicate that rigid registration
has barely corrected the motion artefacts. In fact, one may
argue that the registration has even exacerbated the motion
artefacts compared to the raw images.

By now utilizing our combined rigid and nonrigid
registration method using B-splines, we see in Figure 2(F)
and (G) that the maximum projection and line scan
projection images show extraordinary reduction of the motion
artefacts. This clearly illustrates the deficiencies of rigid
registration for correction of respiration and heartbeat motion
artefacts, whereas nonrigid registration using B-splines is
very promising in this application. The effectiveness of
the nonrigid registration is extraordinarily convincing in
Supporting Information Video 2, which shows the side-by-
side comparison of the sequences of the raw and registered
lung tissue images.

To present a more quantitative measure of registration
success, one may consider evaluating a well-established metric
such as Target Registration Error, or TRE (Fitzpatrick et al.
1998). However, this registration evaluation metric requires
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Fig. 2. (A) Example image from lung tissue data set. (B) Maximum projection of entire series of images before registration. (C) Line scan projection
image before registration. (D) Maximum projection of entire series of images after rigid registration. (E) Line scan projection image after rigid registration.
(F) Maximum projection of entire series of images after nonrigid registration. (G) Line scan projection image after nonrigid registration. Image field is
205 μm wide. Image sequence contains 50 frames. Nonrigid registration was performed using λ = 0.02 and a B-spline control point grid spacing of
δx = δy = 64 pixels, and using a limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) optimizer to determine the final B-spline control points.

manually identifying fiducial points in corresponding pairs
of images. This is quite impractical and labour intensive for
image sequences that contain hundreds of images. Therefore,
as a more automated quantitative evaluation, we compute an
average of sum of squared differences (SSD) of pixel intensities
across all images in the sequence. Normalizing this value
by the number of pixels in the image is not appropriate
because the registered image sequence has a larger field of
view. Because each image in the registered sequence contains
more matching black pixels, a normalized value would show
an improvement in alignment even if no registration had
been performed. Results for this image sequence of lung
tissue are shown in Table 1, which compares SSD values
before registration, after rigid registration, and after both

rigid and nonrigid registration. Even though Figure 2(D)
may show a worsening of image alignment, rigid registration
has marginally improved image alignment according to the
SSD metric. However, nonrigid registration has drastically
improved image alignment, according to both a quantitative
SSD standpoint and a visual standpoint.

As we have seen, SSD quantitative evaluation does not
necessarily match visual evaluation of image alignment.
Therefore, in addition to projection images, we also utilize the
motion vector analysis described previously as a validation
technique. This attempts to identify any distinct motion
patterns within the motion vector field before and subsequent
to registration. Computation of motion vectors was performed
for all images in the sequence, and weighted histograms
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Table 1. Quantitative summary of rigid and nonrigid registration results
using SSD criteria.

Average SSD Percent
Image Sequence per Image Improvement

Lung without
registration

7329.7 –

Lung with rigid
registration

7190.5 1.9%

Lung with rigid and
nonrigid
registration

2739.8 62.6%

Kidney without
registration

13208 –

Kidney with rigid
registration

12938 2.0%

Kidney with rigid and
nonrigid
registration

6026 54.4%

Salivary gland
without
registration

273.0 –

Salivary gland with
rigid registration

246.9 9.6%

Salivary gland with
rigid and nonrigid
registration

124.2 54.5%

of motion vector angles with nonzero magnitudes were
generated for each image. These histograms are created
with 36 bins, and motion vector angles are weighted by
motion vector magnitudes. A weighted histogram for one
particular image in the lung tissue sequence is shown in
Figure 3(A). The histogram for the unregistered image is
shown in blue, whereas the histogram for the corresponding
registered image is shown in red. As can be seen, the
unregistered image has dominant motion to the upper-right
and lower-left with respect to its previous image. However,
the magnitudes of the motion vectors for the registered
image shown in red are significantly reduced compared

to the unregistered image. Furthermore, not only are the
magnitudes of motion vectors reduced, but the distribution of
motion vector angles is significantly more uniform compared
to the unregistered image, indicating that motion is not
apparent in any particular direction. Comparing magnitude
and angle distribution of motion vectors from before and
after registration demonstrates that our nonrigid B-spline
registration technique has successfully corrected a large
portion of the motion artefacts.

Because these weighted histograms omit motion vectors
with zero magnitude, we can include these in a 3D distribution
plot of all motion vectors for the same image as shown in
Figure 3(B) and (C). For the unregistered image, the 3D
distribution plot contains many large peaks across the
entire search window, indicating that significant motion
has been identified throughout the image. Peaks in the 3D
distribution plot indicate that the image contains many motion
vectors with the corresponding magnitude and orientation.
In contrast, for the registered image, the vast majority of the
motion vectors are concentrated at the origin, suggesting no
motion. Again, this comparison indicates that the nonrigid B-
spline registration technique has successfully corrected a large
portion of the motion artefacts.

We previously mentioned that our combined rigid and
nonrigid registration method is robust and effective on both
time-series and three-dimensional data. After demonstrating
our nonrigid registration technique on images collected in
time-series, we will now demonstrate its effectiveness on
three-dimensional sequences of images. Consecutive images
in a three-dimensional sequence of images share enough
content such that the registration process performs well.
Figure 4(A) shows a single image from a three-dimensional
image volume collected from the kidney of a living rat injected
intravenously with Hoechst 33342, which labels cell nuclei
(blue), a large molecular weight dextran that fluoresces red
in the vasculature of the glomerulus (center of image) and
a small molecular weight dextran that is internalized into
endosomes of proximal tubule cells (appearing as fine yellow
spots). Specimen motion occurring during collection of this

Fig. 3. Motion vector analysis for lung tissue data set shown in Figure 2. (A) Weighted histogram of motion vector angles for one slice. Histogram for
unregistered image is show in blue, whereas histogram for registered image is shown in red. Motion vector analysis was performed using a 31 × 31
search window and 16 × 16 blocks size. (B) 3D distribution plot of motion vector displacements before registration. (C) 3D distribution plot of motion
vector displacements after registration.
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Fig. 4. (A) Example image from renal tissue data set. (B) Overlay of consecutive unregistered images. (C) Overlay of consecutive registered images. Image
field is 205 μm wide. Image sequence contains 56 frames. Nonrigid registration was performed using λ = 0.02 and a B-spline control point grid spacing
of δx = δy = 64 pixels, and using a limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) optimizer to determine the final B-spline control points.
(D) Weighted histogram of motion vector angles for one slice. Histogram for unregistered image is show in blue, whereas histogram for registered image
is shown in red. Motion vector analysis was performed using a 31 × 31 search window and 16 × 16 blocks size. (E) 3D distribution plot of motion vector
displacements before registration. (F) 3D distribution plot of motion vector displacements after registration.

volume is apparent as the smeared appearance in the overlay
of two consecutive images shown in Figure 4(B).

We illustrate the effectiveness of our combined rigid and
nonrigid registration method by showing the overlay of

the corresponding two consecutive images after registration
shown in Figure 4(C). Ghosting artefacts resulting from
significant misalignment of objects are obvious in the original
volume, but are vastly improved after registration. Therefore,
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Fig. 5. (A) Example image from salivary gland data set. (B) Maximum projection of 15 images before registration. (C) Maximum projection of 15 images
after registration. (D) Line scan projection image before registration. (E) Line scan projection image after registration. Image field before registration is
25 μm wide. Image field after registration is wider because the field has shifted over the time of collection to include more area. Image sequence contains
310 frames. Nonrigid registration was performed using λ = 0.005 and a B-spline control point grid spacing of δx = δy = 16 pixels, and using a limited
memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) optimizer to determine the final B-spline control points.

this visual inspection of the registration results confirms that
the motion artefacts have largely been corrected. Again, this
motion reduction is more apparent in Supporting Information
Video 3, which shows the side-by-side comparison of the
sequences of the raw and registered three-dimensional kidney
tissue images.

Again, quantitative SSD values to evaluate registration
success are shown in Table 1 for this image sequence of kidney
tissue. Similar to the lung, rigid registration has marginally
improved image alignment according to the SSD metric,
whereas nonrigid registration has drastically improved image
alignment. Motion vector analysis was again performed as
an additional validation technique. A weighted histogram
for one particular image in the kidney tissue sequence is
shown in Figure 4(D). The histogram for the unregistered
image is shown in blue, whereas the histogram for the
corresponding registered image is shown in red. As can be seen,
the unregistered image has an extremely distinct motion to the
upper-right with respect to its previous image. However, the
histogram in red shows the near elimination of all motion in the
registered image, as all of the histogram bins are near zero and
dwarfed by the histogram bins from the unregistered image.
Again, this simple comparison indicates that the nonrigid
B-spline registration technique has successfully corrected
essentially all of the motion artefacts.

All motion vectors computed across the same image in the
sequence are quantified in a 3D distribution plot and are

shown in Figure 4(E) and (F). For the unregistered image,
the 3D distribution plot contains one large peak at the edge
of the plot, confirming that the majority of the motion vectors
suggest upward motion. In contrast, for the registered image,
essentially all of the motion vectors are concentrated at
the origin, suggesting no motion. Again, this comparison
indicates that the nonrigid B-spline registration technique has
successfully corrected the vast majority of the motion artefacts.

Our last example shows the effectiveness of motion artefact
correction even at the subcellular level. Figure 5(A) shows a
single image from a time-series of images of a single cell in the
salivary gland of a living mouse. The mouse cell is expressing
EGFP-clathrin in endosomes and the trans-Golgi network and
mCherry-TGN38 in the trans-Golgi network. Because even
the slightest motion will compromise the ability to distinguish
intracellular organelles, motion artefacts present a serious
challenge to intravital microscopy of subcellular processes.

Due to the decreased image resolution and image scale along
with more intense motion artefacts compared to the previous
image sequences, the smoothness penalty coefficient in the
cost function has been reduced by a factor of 4, and the B-spline
control point grid spacing has been increased by a factor of 4.
A smaller and more dense B-spline control point grid along
with a decreased smoothness constraint coefficient allows
for more bending and warping in the registration process
to correct more intense motion artefacts, both spatially and
temporally. Maximum projection images across 15 sequential
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Fig. 6. Motion vector analysis for salivary gland data set shown in Figure 5. (A) Weighted histogram of motion vector angles for one slice. Histogram
for unregistered image is show in blue, whereas histogram for registered image is shown in red. Motion vector analysis was performed using a 31 × 31
search window and 8 × 8 blocks size. (B) 3D distribution plot of motion vector displacements before registration. (C) 3D distribution plot of motion vector
displacements after registration.

image planes from before and after registration are shown in
Figure 5(B) and (C), respectively, demonstrating that
registration accomplishes a significant reduction in the
motion artefact of the original image series. The correction
is somewhat obscured in these images by the fact that the
intracellular vesicles actually are in motion. The success of
the correction is more apparent in Supporting Information
Video 4. Viewers of the video will notice that the registration
performs better toward the end of the video where there is more
pronounced subcellular motion compared to the beginning
of the video sequence. Perhaps contrary to intuition, the
nonrigid registration method will more closely register a pair of
images that contain a greater misalignment—up to a certain
threshold. If two images are too similar, the smoothness
constraint term in the cost function will overpower the
similarity metric term. Therefore, for the beginning of the
video sequence, where consecutive images are already much
more closely aligned, tiny misalignments are allowed to
propagate through the registration process. The correction
is also apparent in comparison of line scan images from before
and after registration shown in Figure 5(D) and (E), in which
the disjointed subcellular objects of the original image series
have been properly aligned into solid, continuous objects
through the time series.

Finally, quantitative SSD values to evaluate registration
success are again shown in Table 1 for this image sequence
of salivary gland tissue. Similar to both the lung and kidney,
rigid registration has marginally improved image alignment,
whereas nonrigid registration has drastically improved image
alignment. Motion vector analysis is performed to validate the
subcellular nonrigid registration results as well. A weighted
histogram for one particular image in the salivary gland tissue
sequence is shown in Figure 6(A). The histogram for the
unregistered image is shown in blue, whereas the histogram
for the corresponding registered image is shown in red. The
histogram bins for the registered and unregistered images
show little distinction between each other. However, the
comparison of the 3D distribution plots for both unregistered
and registered images shown in Figure 6(B)–(C) is much more

convincing. Motion vectors for the registered sequence are
much more concentrated at the origin compared to those
for the unregistered image. This comparison indicates that
the nonrigid B-spline registration technique has successfully
corrected a large portion of the motion artefacts at the
subcellular level as well.

Discussion

Although intravital microscopy has made it possible to apply
many of the same techniques that have been productively
used in microscopic studies of cultured cells to studies of
single cells in vivo, quantitative analysis is frequently limited
by motion artefacts, which—with the notable exception of
the brain—are ubiquitous to intravital microscopy. Motion
artefacts, resulting from respiration and heartbeat, limit
resolution and preclude segmentation, which is prerequisite
to image quantification. In addition, many other well-known
challenges complicate quantitative analysis of fluorescence
images collected from living animals. Microscopy volumes are
inherently anisotropic, with aberrations and distortions that
vary in different axes. At a larger scale, contrast decreases
with depth in biological tissues. This contrast decrease
aggravates a general problem of fluorescence images, which
characteristically have low signal levels (Dufour et al. 2005).
Signal levels are further decreased by the need for high
image capture rates necessary to image dynamic biological
structures. It has been demonstrated that image registration
can significantly improve image segmentation performance,
especially with volumetric data (Pohl et al. 2005). However,
images with poor contrast and low resolution generally
preclude registration methods involving landmarks, and
decrease the ability of intensity-based registration methods
to properly identify corresponding objects across images.
Furthermore, biological structures often consist of many
different kinds of irregular and complicated structures that are
frequently incompletely delineated with fluorescent probes.
With edges of biological structures sparse and poorly defined,
gradient- and edge-based error metrics used in the registration
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method will perform poorly. Low contrast and small intensity
gradients in multi-photon image volumes cause image
analysis and rendering results to be very sensitive to small
changes in parameters, resulting in the failure of typical
image registration methods. Despite all of the challenges
discussed, we have demonstrated that a combination of rigid
and nonrigid registration techniques is capable of significantly
improving the quality of microscope images collected in time
series or in three dimensions from living animals.

The nonrigid registration method using B-splines discussed
in this paper is sufficiently robust to overcome many of the
challenges outlined above, and is paramount to any image
analysis to follow. Experimental results indicated that this
method is promising in registering images in time-series data
sets as well as data sets comprised of images acquired at
increasing tissue depths. In addition, the registration method
has performed well for image sequences of kidney, lung and
salivary gland of living animals. With the one exception of
the subcellular salivary gland images, all image sequences
utilized identical sets of registration parameters, including grid
point spacing and smoothness penalty cost coefficient. This
demonstrates that a default set of parameters can be chosen
to perform reasonably well to register a wide variety of image
sequences. Furthermore, the rigid registration section of our
method has a wide capture radius and has a strong ability
to correct large displacements. The nonrigid registration
section of our method is able to correct small to medium
discontinuities. As a result, with the combination of the
two, we are able to correct a wide range of discontinuities.
Therefore, this registration method demonstrates profound
versatility and robustness.

Previously developed and well-established registration
methods may be used to process stacks consisting of multiple
images (Thévenaz et al. 1995; Thévenaz et al. 1998).
However, these methods implement an affine registration.
Affine registrations account for transformations including
translation, rotation, scaling, and shearing. However, these
transformations alone are insufficient to register image
sequences collected in vivo. The dynamic motion from living
animals introduced from respiration and heartbeat cannot be
described with an affine transformation.

Objective evaluation of our results proves to be difficult due
to the lack of ground truth data. Evaluation of results has been
initially addressed subjectively by evaluating overlay images,
maximum projection images, and line scan projection images,
and objectively by using using block motion estimation
vectors. Even with the lack of ground truth, the results
from these images along with side-by-side video comparisons
all contribute to demonstrating the efficacy of our nonrigid
registration method using B-splines. However, evaluation
of accuracy in contrast to precision remains difficult as
judgments are significantly more subjective and less objective.

In summary, intravital microscopy is a powerful technique
for studying physiological processes in the most relevant

context, in the living animal. However, developing assays of
physiological function will require developing novel methods
of digital image analysis that will support quantitative
analysis. Insofar as accurate image registration is prerequisite
to quantitative analysis of time-series and volumetric
image data, the development of effective methods of image
registration is fundamentally important to realizing the
potential of intravital microscopy as a tool for understanding
and treating human diseases. The techniques described here
will enable new studies that were previously impossible.
Readers interested in using the tools described in this paper can
contact us (psalama@iupui.edu) concerning the availability
of the software. At the time of development, computational
runtime was a secondary concern compared to registration
performance and accuracy. However, the software to be
provided to end users is being rewritten for efficiency and
runtime improvements. Future work will involve developing
registration approaches using more 3D techniques, as
surrounding images provide additional information useful
in distinguishing the degree of distortion from motion
artefacts.
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Zitová, B. & Flusser, J. (2003). Image registration methods: a survey. Image
Vis. Comput., 21, 977–1000.

C© 2011 The Authors
Journal of Microscopy C© 2011 Royal Microscopical Society



1 4 K . S . L O R E N Z E T A L .

Supporting Information

Additional Supporting Informationmay be found in the online
version of this article:

Please note: Wiley-Blackwell are not responsible for the

content or functionality of any supporting materials supplied
by the authors. Any queries (other than missing material)
should be directed to the corresponding author for the
article.

C© 2011 The Authors
Journal of Microscopy C© 2011 Royal Microscopical Society




